Non-Destructive Assay Techniques for Characterization of Radioactive Waste

INAC, May 8, 2024

Dr. Sasha Philips

Radioactive Waste Characterization Introduction

- Characterization is the identification of type of waste and quantification
- Why?
 - Determination of the next step in the waste treatment
 - Determination of where the waste must be sent
 - Documentation (for future)
 - Long-term planning
- Summary objective: Volume reduction and cost reduction

Agenda

Non-Destructive Assay (NDA) Introduction

- Impact of Accuracy and Uncertainty
- NDA techniques
- Measurement Uncertainty and Calibration choices

• Summary

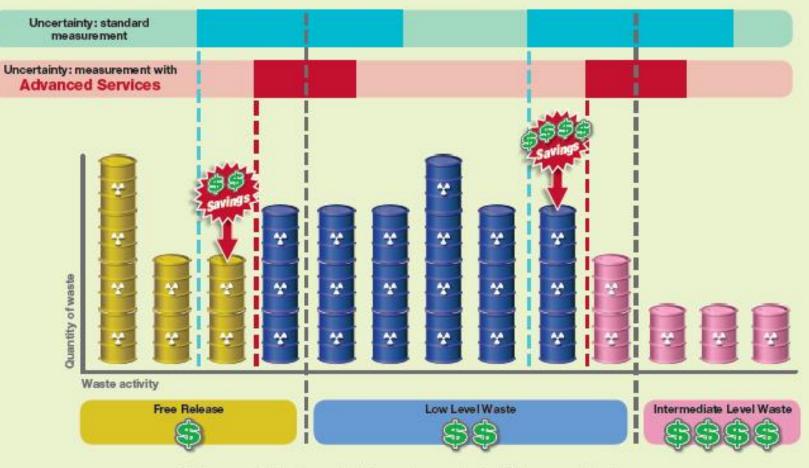
NDA = Non-Destructive Assay

Benefits/Value of NDA:

- Reduces risk of spreading radioactive/contaminated materials – Safety/Environment/cost
- Reduces labor \rightarrow Lowers cost
- Reduces measurement time \rightarrow Lowers cost

NDA Requirements

Measurement requirements for NDA:


- Validation and proven experience of analysis and algorithms → to obtain an accurate result
- High dependance on calibration
- Good quantification of uncertainty
- Quality requirements for convincing regulators of results

Impact of Accuracy and Uncertainty

Impact on costs and planning

Segregation and storage costs as a function of uncertainty

Higher uncertainty has a direct impact on sentencing & storage cost and possibly on the validation of the method by authorities

High-Purity Germanium detectors (HPGe)

NDA Techniques

Depends on:

- Origin of the waste (waste type; what process)
- How it is packaged Homogeneous, heterogeneous, partially filled
- Container type 200 L drum, drum overpack, small cans, boxes
- Activity level Low or High
- "Throughput" How many containers per day

 Manual or automated loading
- Other logistics considerations (space, environment)

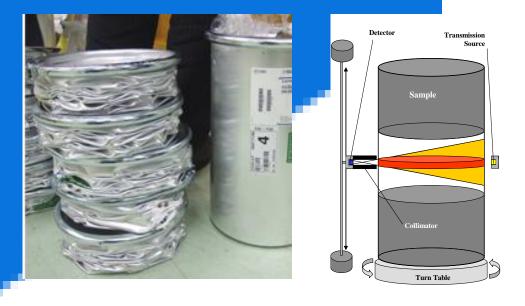
Different Methods:

- Static measurements
- Scanning measurements

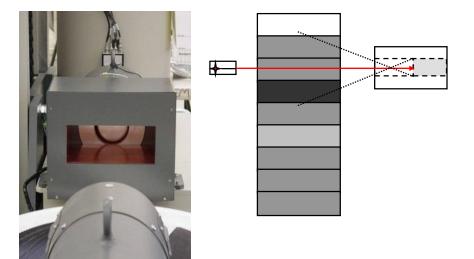
Static Measurements

- Detector(s) do not move
- Drum may or may not rotate
- Example NDA systems: Q2, "Far-field"

- Low-level waste and confirmation of free release ("clearance")
- Sensitivity (fast, easy) is more important than accuracy and uncertainty reduction

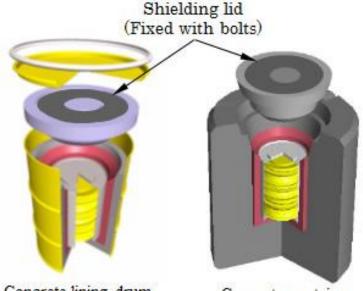


Segmented Scanning


- The detector scans vertically
- The drum rotates
- Example NDA systems: Standard SGS, Modular SGS
 - When radioactive material vertically stratified
 - Wen sample matrix has vertical density variations
 - Accurately quantifies waste activity for disposition
 - Lowers uncertainty

Segmented Scanning Method

- By design & methodology the system improves accuracy
- Segmentation for stratified activity
- Transmission measurement for density variations
- Calibrations can still be based on standards
- Modeled calibration tools offer more flexibility



Segmented Scanning for more extreme situations

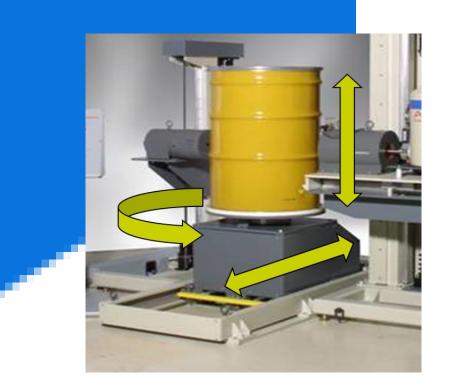
- Overpack drums
- Combination of SGS technique and ISOCS calibrations is the most powerful approach

Concrete lining drum

Concrete container

SGS Flexibility

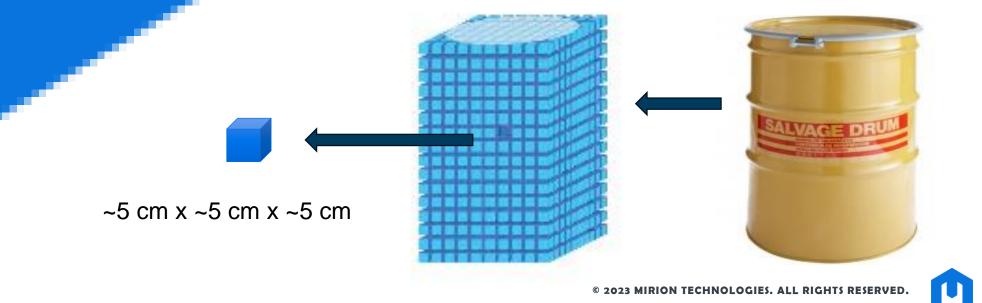
- Can be calibrated for other geometries
 - Examples: HEPA filters, Smaller drums, cans
- Transmission source can be used for fill-height estimation – eliminates bias from assuming uniformly filled drums
- Stronger transmission source can be used for highdensity samples
 - Example: Concrete lined drums, HDPE HIC

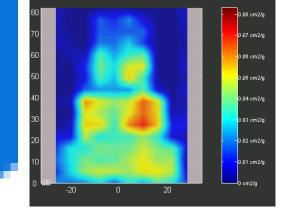

Tomographic Gamma Scanning (TGS)

- The detector scans vertically
- The drum rotates and translates
 - When the radioactive material is nonuniformly distributed in the sample; hot spots
 - When the sample matrix is inhomogeneous (void spaces) and has large density and material variations

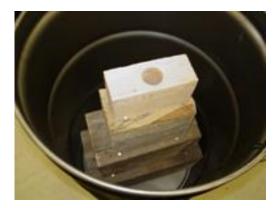

TGS Scanning Protocol

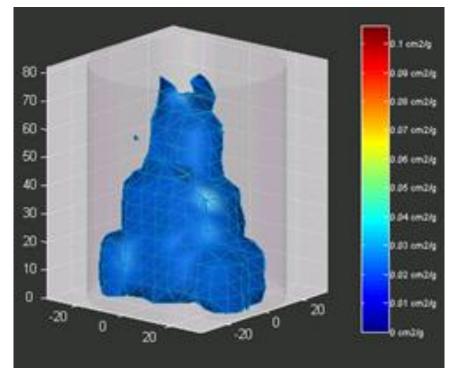
- For each detector height (segment), the drum simultaneously rotates and translates
- For each segment several ray-projections are generated from different overlapping perspectives
- Each segment is then composed of several volume elements ("voxels")




TGS Analysis

- The matrix is analyzed as a stack of cubes (voxels)
- Each voxel can be different from all others in material, but inside a voxel the matrix & activity is assumed to be constant
- The 200 L (55 gal.) has 10 × 10 × 16 discrete voxels



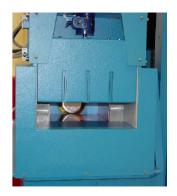

TGS Results – Sample Matrix

False Color Transmission-measurement rendering

IU

TGS Results – Point Sources

🛃 TGS Image Viewer - C:\Canberra\NDA2k\Data\00000275_CNTR0001_DCA... 🗖 🗖 File View Camera Help 666 9 ? Geometry Time Item. Container Height: 0.9 m Seaments: 16.0 Geometry: TGS-NOW Container Width: 0.6 m Voxels/Segment: 100.0 Container Type: TGS-200 Liter Voxel Size: 6.0x6.0x5.4 Activity/Mass C Attenuation Nuclide: Cs-137 -Energy: 668.225 💌 keV Units: Activity -Colormap: Jet -0.000 Max 60.000 Min 0.5 Filter Cut-Off: Container Transparency п -1 0 Matrix Transparency: -1 0 Slice Position


- Emission measurement image:
- Three ¹³⁷Cs Point Sources (~60 mCi each) in a 200-liter
 Drum with homosote (0.7 g.cm⁻³) sample matrix

High-Activity Measurements

- Automated collimators and attenuators
- Automated detector distance
- Positions based on dead-time or dose-rate

Total Measurement Uncertainty (TMU) σ_{TM}

NDA 2000 Operations

ЩЦ 🎒 🚵

<u>E</u>xpand Clear

ROI Index

Datasource

PLC - Monitoring Status of PLC PLC - Completed Connection to the PLC

Counter: Ricks SGS

Start

File Analyzers <u>Assay M</u>anual <u>U</u>tility <u>H</u>ardware Setup <u>Go</u> <u>H</u>elp

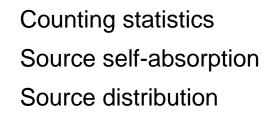
Q -

Description

Start Time:

Elapsed Live

-0 00 00 0 0 • 🖬 🖬 🔪 🍐 🛧 🗠 🔍 🚺


Value

5 18 sec

Idle | LOG=256K | Channel: 170 : 85.0 (keV) Counts:

- TMU includes both random and systematic errors
- Systematic Includes fixed (calibration) and varying (sample specific characteristics) uncertainties
- Sample-specific values are calculated in real time in the software analysis

$$\sigma_{TU} = \sqrt{\sigma_{calibration}^2 + \sigma_{random}^2 + \sigma_{source\ location}^2 + \sigma_{matrix}^2 + \sigma_{method}^2}$$

Calibration source errors Matrix non-homogeneity Isotopic measurement uncertainty

2/02/2000 4:57:35 PN Left Marker:

Description

Right Marker:

- 🗆 ×

Value

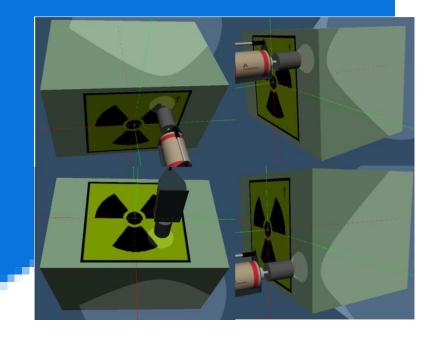
164

175 :

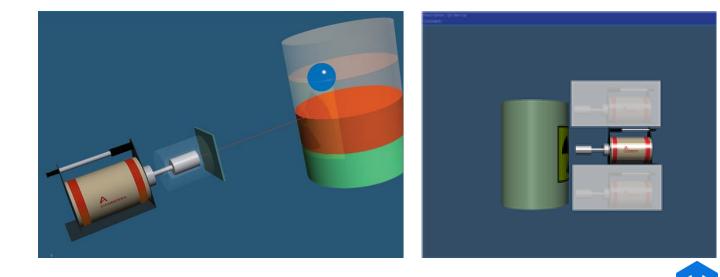
82.0 keV

87.5 keV

Calibration Approach



The initial calibration is generated at the factory in two possible ways:


- 1. Measured With calibration drum standards & multi-nuclide line sources
- Mathematical Model –Monte Carlo, ISOCS™ (Mirion) approach

In either case verification measurements are made using factory drums & sources

ISOCS method

- Every detector gets a unique mathematical model
- Validated by MCNP and factory test measurements
- ISOCS software can generate many sample shapes, materials and densities, source locations, and detector positions
- Many decades of validation and excellent results

SUMMARY

- Radioactive waste fundamental requirements - Volume reduction and cost reduction
- If you have accurate characterization you can use reduction techniques:
 - Consolidation (to increase activity content)
 - Compaction (direct volume
 - reduction)

22

- NDA systems Characterize a variety of wastes (loose, dry waste, resins and filters)
- NDA measurements have a high reliance on analysis algorithms and calibration to obtain accurate results
- Most challenging waste measurements have already been solved (or well bounded)