

1

Radiation Therapy Treatment Delivery Systems

Modern Technologies and Future Directions

Pedro Cardoso

Medical Physicist @ Hospital Vila Nova Star

What is Radiation Therapy (RT) and how it's done

What's "mainstream" in modern RT delivery technology

What's trending

Radiation Therapy

- Use of ionizing radiation to treat diseases
- Mostly used to target and destroy cancer cells

YouTube: UPMC Stanford Medicine

The radiation Cancer cells growing in

your body are treated

with radiation

damages the cancer cells, killing them.

How cancer cells are treated with radiation therapy

Over time, healthy cells grow again and the tissue recovers

- Radiation sources can be natural (radionuclides) or artificial (particle accelerators)
- In Brazil, the applications of radiation in therapy date from the 1920s

Radiation Therapy

- Ionizing radiation can damage the DNA
- Healthy tissue can repair some of the damage
- With correct dose and fractionation, we can destroy more cancer cells than healthy tissue

Radionuclide units

• Gamma radiation (Cobalt-60 and Cesium-137)

- Very uncommon in the developed world
- In Brazil: 20 cobalt-60 units in 2019

- Still common in developing countries
- Simplicity (source calibration and maintenance)

1987 Goiânia, Brazil

Deactivated Cs-137 stolen

Source capsule broken

"Special mention must be made of CNEN, which coordinated the response to the accident within Goias' State and at the national and international levels."

The Radiological **Accident** in Goiânia

NTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA.

Brachytherapy (BT)

- Use of small radioactive sources in close proximity to the target
- Intracavitary, implants (seeds and wires) or contact

Brachytherapy (BT)

• In Brazil, >95% of BT procedures are gynecological

(only site covered by the national public health insurance)

- Has been in decline worldwide
- Ex: in USA, GYN patients that received BT went from ≈85% in 1990 to ≈60% in 2010

Linear accelarators (LINACs)

- Most common source of radiation in RT (photons and electrons)
- Replaced most cobalt and cesium in the 1960s-1980s
- In Brazil, fist Linac in 1971, 363 Linacs in 2018

- Injection Gun
- Source of electrons
- Thermionic effect of heated filament

- Accelerator tube
- Accelerates electrons with microwaves in resonating cavities
- Most common energy used in RT is 6MV, but there are usually a few discrete options of higher energies

- Microwave source
- Magnetron (generator) and klystron (amplifier)

- Bending magnets
- Redirects the electron beam towards the patient
- Acts as energy filter

- Target
- Tungsten disc
- Produces X-Ray photons through deceleration of the incident electrons (bremsstrahlung)

- Collimators
- Shape the beam into desired clinical shape

Early treatments: 2-Dimensional

- Treatment region based on planar images, usually very overestimated
- Beam shaping done with metal blocks mounted on trays
- Simple beam configuration and manual dose calculation

3-Dimensional RT

• Targets and organs-at-risk are defined in volumetric images (CT)

Multileaf collimators (MLC)

- 1980s-1990s (first in Brazil in 1995)
- Tungsten leaves with individual motors
- Capable of dynamic beam shaping

X-Ray Dose distribution

• X-ray dose deposition decreases with depth

Single beam is often unacceptable

3D Conformal (3DCRT)

- Use of multiple beams to conform the dose to the target shape
- Treatment planning system (TPS) software used for dose calculation

Beam modulation

Intensity modulation can be achieved with dynamic MLC motion

Intensity modulated RT (IMRT)

• Multiple modulated beams = optimal sparring of normal tissue

Intensity modulated RT (IMRT)

- IMRT: 1990s-2000s (first in Brazil in 2000)
- Better conformality to target and sparring of normal tissue

Conformal (3D) IMRT

• Done in about 55% of services in Brazil

Modulated arc therapy (VMAT)

- VMAT 2000s-2010s (first in Brazil in 2010)
- Dynamic gantry rotation + MLC motion + dose rate variation
- Combines high modulation with delivery speed

Image-guided RT (IGRT)

- Quality image guidance allows smaller margins
- MV image \rightarrow On-board kV image \rightarrow Cone-beam CT

Fiducial matching/tracking

Surface guidance

IGRT

- Main contributing factor for the precision of modern RT
- Several modalities of image guidance available
- Many hardware developments in the last few decades
	- **CBCT**

Transponders

MRI-Linacs

Ultrasound

PET-Linacs

Breathing motion

• Moving targets pose a challenge in sparring normal tissue

- Motion management (reduction of irradiated volume)
- Gating
- Tracking

Hypofractionation

- Technology advances have enabled more precise treatments
- Intensity modulation
- Image guidance
- Tighter mechanical accuracy
- Safe use of **higher doses in fewer fractions** (hypofractionation and radiosurgery)

The application of different hypofractionation schemes is a major trend in clinical practice Ex: Prostate

 \Box

Radiosurgery and ablative RT

Conventional RT

- Large margins
- Homogeneous dose with smooth dose falloff

Stereotactic ablative RT (SABR)

- Tight margins
- Heterogeneous dose with sharp dose falloff
- Much less dose outside the target
- **Geometric miss is more severe**

Special LINACs: CyberKnife

- Robotic tracking
- Automatic detection and correction of offsets in near real time
- Continuous compensation of breathing motion

• Only 1 in Brazil

Special LINACs: Tomotherapy

- Helical delivery of fan beam with fast binary MLC
- Superior capability of beam modulation
- Continuous compensation of breathing motion

• Only 1 in Brazil

Electron Beams

- Shallow dose distribution, rapid dose falloff
- Easy to shield with a few mm of lead
- Used for skin and superficial targets

Intraoperative RT (IORT)

- Conventional Linacs (electron beam)
- Brachytherapy
- Dedicated mobile units

Figure 2: MammoSite Balloon Brachytherapy-External (left) and sagittal (right) views of balloon with dosimetric target coverage. Photographs courtesy of Douglas Arthur, with permission from the Journal of Clinical Oncology.

Proton therapy

- Protons and heavy ions \rightarrow Bragg peak
- Deep range with virtually zero exit dose
- Range depends on energy

Proton therapy

- Pencil beam scanning: dose conformity possible with even a single beam
- Intensity modulated PT: potential to minimize integral dose
- Challenge: uncertainties (particle range, biological effectiveness, plan robustness, motion management)

Proton therapy

- Biggest challenges: cost and size
- Most current facilities are dedicated regional PT centers with multiple treatment rooms

MD Anderson Proton Center

• None in Brazil (nor Latin America)

Future directions

• Most research efforts are in the use of artificial intelligence software (won't be covered here)

- Currents trends in treatment delivery hardware:
- **Improved workflow and cost reduction**
- **Better imaging and adaptive RT**
- **Ultra-high dose rate (FLASH)**

Linacs: Simpler can be better

- Compact blueprint (single energy, no couch rotation, self-shielded)
- FASTER! (fast rotation, faster imaging, fast modulation)
- Maintenance: modular parts (replace instead of repair, increase uptime)
- Reduced or simplified features, but still advanced machines
- Reduce costs and treatment time to make technology more available

• Compact vaultless gyroscopic radiosurgery Linac

Protons: Smaller and cheaper

- Price of acquiring proton therapy treatment has greatly decreased, but is still unaffordable in most settings (in the order of 10⁷ to 10⁸ USD)
- Room size requirements have decreased dramatically

Specialized proton centers

60_m

 32_m

Dedicated proton rooms

Replacing old Linacs in existing rooms

Magnetic Resonance guided RT

- LINAC + MRI
- Better target definition and real-time motion assessment
- In development for a couple of decades due to MANY engineering challenges, but finally becoming mainstream

• Daily online plan adaptation to target position and deformation

Lee et al "Online Adaptive MRI-Guided Stereotactic Body Radiotherapy for Pancreatic and Other Intra-Abdominal Cancers" Cancers 2023 42

MRgRT

- Online assessment and adaptation of target response
	- Shrinkage/growth
	- Biomarkers

Biological guided RT (BgRT)

- LINAC+PET
- Identify, adapt and track "active" regions

Ultra High Dose Rate (FLASH)

- Typical dose rate of SRS Linac ≈ 10Gy/min
- FLASH: $40-100$ Gy/s ("clinical") (can reach $>10^3$ Gy/s)
- Treatment delivery in a few ms \rightarrow further improve precision therapy?

FLASH effect

- Evidence of better normal tissue sparring, not yet fully understood
- Potential for sparing normal tissue within the field (i.e. using biology instead of avoiding the tissue and potentially underdosing the tumor)

FLASH Challenges

- Mostly done with **charged particles**
- currently **unachievable with MV X-Rays** (bremsstrhalung yield and heat)
- Electrons: limited to superficial lesions
- Feasibility issues with pencil beam scanning and IMPT (effective dose rate to produce FLASH effect)
- Quality assurance challenges (detectors for ultra high dose rate)
- Currently: pre-clinical, transition
- More questions than answers
- Mostly animal studies
- Feasibility studies and very limited clinical trials ongoing

Contact: pedrohbcardoso@gmail.com

