

Garantindo Energia, Saúde e Alimentação

🖮 6 a 10 de maio de 2024

🗣 Escola de Guerra Naval (EGN) | Rio de Janeiro - RJ

Neutronic Evaluation of a SMR using the MCNP and SERPENT Codes

Natália Gonçalves, Karytha M. S. Corrêa, María Lorduy-Alós, Sergio Gallardo, Carlos E. Velasquez, Clarysson Alberto M. da Silva, Gumersindo Verdu and Claubia Pereira nataliagplo@ufmg.br

Rio de Janeiro, 08 de maio de 2024

Introduction

Moltex SSR Module

150MWe 18t, 50m³

NuScale Module

Figure 1: To-scale comparisons of the SSR-W1000 with AP1000 (left) and an SSR-W module with a a NuScale module.

Small modular reactors (SMRs) are advanced nuclear reactors that have a power capacity of up to 300 MW(e) per unit, which is about one-third of the generating capacity of traditional nuclear power reactors. Their main advantages are:

- Physically a fraction of the size of a conventional nuclear power reactor.
- ✤ Its modular characteristic, making it possible for systems and components be factoryto assembled and transported as a unit to a location for installation.
- ✤ Offer savings in cost and construction time, and they can be deployed incrementally to match increasing energy demand

Introduction

Overview of Stable Salt Reactor Core Module

The principle module parameters are:

- Core Power
 - □ 375 MW(th)
 - □ 150 MW(e)
- Salt nominal temperatures
 Fuel salt = 760 °C
 - \Box Coolant salt = 588 °C
- Layout
 - \Box 10x10 array of fuel assemblies
 - \Box 18x18 fuel rods
- Dimensions Indidual Module Core
 - □ 2.05 m length across fuel assemblies
 - \Box 2.05 m width across fuel assemblies
 - □ 3.7 m height of fuel (incl. Support frames)
 - □ 1.6 m active height of fuel assemblies
- Dimensions Reactor Tank External for 300 MW(e)
 - \Box 6 m length (along modules)
 - \Box 5.3 m length (across modules)
 - □ 4.2 m overall height

This work aims to assess the neutronic behavior in steady state and later during burnup, for the SSR-W core, using the Monte Carlo codes MCNP6.2 [3] and SERPENT 2.1.32 [4]. The reactor was simulated for full power temperatures of the components using data from the ENDF/B-VIII.0 cross-section libraries [5] and the NJOY99.396 code [6].

Methodology

The SSR-W core was modeled with the MCNP6.2 and SERPENT 2.1.32 codes, using the ENDF/B-VIII.0 neutrons cross-section sublibrary.

Core Parameters					
# assemblies	100				
# rods per assemblies	324				
Core Power (MWth)	375				
Fuel salt composition	UCl ₃ (20%) / PuCl ₃ (20%) / NaCl (60%)				
Fuel salt temperature (°C)	760				
Fuel salt density (g/cm ³)	3.2379				
Coolant salt composition	ZrF ₄ (39.2%) - ZrF ₂ (1.96%) - NaF (10%) - KF (48%) - HfF ₄ (0.8%) - HfF ₂ (0.04%)				
Coolant salt temperature (°C)	588				
Coolant salt density (g/cm ³)	2.6603				
Cladding	HT9				
Reflector	ZrF ₄ (39.2%) - ZrF ₂ (1.96%) - NaF (10%) - KF (48%) - HfF ₄ (0.8%) - HfF ₂ (0.04%)				

Methodology

In an SSR, the fuel is burned over a period of 5 years. Every six months, the fuel elements are moved horizontally to allow fresh fuel to enter.

Fuel progress across the core (I: inlet fuel, E: outlet fuel).

Fue	el Salt	Coolant Salt		
Isotope	Atomic Fraction	Isotope	Atomic Fraction	
²³⁸ Pu	2.8780E-03	⁹⁰ Zr	6.6709E-02	
²³⁹ Pu	3.5648E-02	⁹¹ Zr	1.4387E-02	
²⁴⁰ Pu	1.7812E-02	⁹² Zr	2.1752E-02	
²⁴¹ Pu	8.8003E-03	⁹⁴ Zr	2.1574E-02	
²⁴² Pu	6.2902E-03	⁹⁶ Zr	3.4032E-03	
²³³ U		¹⁹ F	6.8944E-01	
²³⁴ U		²³ Na	3.1056E-02	
²³⁵ U	1.4468E-04	³⁹ K	1.3948E-01	
²³⁶ U		⁴⁰ K	1.7061E-05	
²³⁸ U	7.1284E-02	⁴¹ K	9.5747E-03	
³⁵ Cl	4.9349E-01	$^{174}\mathrm{Hf}$	4.2831E-06	
³⁷ Cl	1.4937E-01	$^{176}\mathrm{Hf}$	1.3921E-04	
²³ Na	2.1429E-01	$^{177}\mathrm{Hf}$	4.8946E-04	

Fuel salt with 3.1% of fissile material obtained from PUREX-type reprocessing.

Results

Parameters obtained for steady state, simulated with 10,000 particles for 400 cycles, with 100 inactive cycles in both codes.

Parameters	MCNP	SERPENT	Code Differences	
k _{eff}	$1.16123 \pm 41 \text{ pcm}$	1.16157 ± 23 pcm	-34.00 pcm	
β_{eff}	0.00311	0.00325	-4.40 %	
P_{NL}	0.99050	0.99016	0.03 %	
α_{TF}^+ (pcm/K)	-8.10647	-8.52078	-5.11 %	
α_{TF}^{-} (pcm/K)	-8.94140	-8.70144	2.68 %	
f	0.10628	0.10696	0.64 %	
ϕ_{RS} (n/cm ² .s)	7.5386E+12	7.0500E+12	-6.48 %	
ϕ_{core} (n/cm ² .s)	8.5822E+14	8.5725E+14	-0.11%	

f corresponding to returning neutrons fraction ϕ_{RS} is the reflector surface flux

Results

The burnup simulation in both codes was carried out only for one assembly, with an equivalent power of 3.75 MW(th), burnup intervals of 6 months, and a total burnup of 5 years.

FP Specific Activity (Bq/kg)						
MCNP	SERPENT					
Ru-105	Ag-118m					
2.489E+20	1.770E+24					
I-135	Ag-114					
1.308E+20	7.966E+23					
Xe-135	Rh-104					
9.402E+19	9.497E+22					
I-130	In-114					
7.222E+19	5.097E+22					
Eu-157	Ag-117					
4.869E+19	4.904E+22					
Pr-142	Ag-108					
4.274E+19	2.707E+22					

мfv

inal Activity (Bq)

INAC 2024 - Rio de Janeiro, 08 de maio

Results

Begin of Cycle

0	6	12	18	24	30	36	42	48	54
54	48	42	36	30	24	18	12	6	0
0	6	12	18	24	30	36	42	48	54
54	48	42	36	30	24	18	12	6	0
0	6	12	18	24	30	36	42	48	54
54	48	42	36	30	24	18	12	6	0
0	6	12	18	24	30	36	42	48	54
54	48	42	36	30	24	18	12	6	0
0	6	12	18	24	30	36	42	48	54
54	48	42	36	30	24	18	12	6	0
End of Cycle									
			E		l Cy	cie			
6	12	18	24	30	36	42	48	54	60
6 60	12 54	18 48	24 42	30 36	36 30	42 24	48 18	54 12	60 6
6 60 6	12 54 12	18 48 18	24 42 24	30 36 30	36 30 36	42 24 42	48 18 48	54 12 54	60 6 60
6 60 60	12 54 12 54	18 48 18 48	24 42 24 42	30 36 30 36	36 30 36 30	42 24 42 24	48 18 48 18	54 12 54 12	60 6 60 6
6 60 60 60	12 54 12 54 12	18 48 18 48 18	24 42 24 42 24 24	30 36 30 36 30	36 30 36 30 36	42 24 42 24 42 42	48 18 48 18 48	54 12 54 12 54	60 6 60 60
6 60 60 60 60	12 54 12 54 12 54	18 48 18 48 18 48	24 42 24 42 24 24 42	30 36 30 36 30 36	36 30 36 30 36 30	42 24 42 24 42 24 24	48 18 48 18 48 18	 54 12 54 12 54 12 	60 60 60 60 60
6 60 60 60 60 60	12 54 12 54 12 54 12	18 48 18 48 18 48 18	24 42 24 42 24 42 24 24	30 36 30 36 30 36 30	36 30 36 30 36 30 30 36	42 24 42 24 42 24 42 24 42	48 18 48 18 48 18 48	 54 54 54 12 54 54 	60 60 60 60 60
6 60 60 60 60 60	12 54 12 54 12 54 12 54	18 48 18 48 18 48 18 48	24 42 24 42 24 42 24 42 24 42	30 36 30 36 30 36 30 30 36	36 30 36 30 36 30 36 30 36 30 36 30 36 30 36 30 36 30 30 30	42 24 42 24 42 24 42 24 42 24	 48 18 48 18 48 18 48 18 18 	 54 12 54 12 54 12 54 12 	60 60 60 60 60 60
6 60 60 60 60 60 60	12 54 12 54 12 54 12 54 12	18 48 18 48 18 48 18 48 18	24 42 24 42 24 42 24 42 24 24	30 36 30 36 30 36 30 30 30	36 30 36 30 36 30 36 30 36 30 36 30 36 30 36 30 36 30 36 30 36	42 24 42 24 42 24 42 24 42 24 42	48 18 48 18 48 18 48 18 48	 54 12 54 12 54 12 54 54 	 60 60 60 60 60 60 60 60 60

		Begin of Cycle		End of Cycle		
	MCNP	SERPENT	Code Differences	MCNP	SERPENT	Code Differences
Fissile (kg)	1839.89	1839.64	-0.01%	1786.96	1786.61	-0.02%
Fissionables (kg)	4522.50	4522.90	0.01%	4505.33	4505.87	0.01%
Fission Products (kg)	311.89	315.04	1.01%	381.01	385.02	1.05%
Total (kg)	12093.80	12097.01	0.03%	12092.50	12096.67	0.03%
k_{eff}	1.06951	1.06898	-53.00 pcm	1.04992	1.04933	-59.00 pcm
β_{eff}	0.00309	0.00322	3.95%	0.00322	0.00317	-1.65%
P_{NL}	0.99127	0.99061	-0.07%	0.99133	0.99056	-0.08%
f	0.10725	0.10680	-0.41%	0.10610	0.10665	0.51%
ϕ_{RS} (n/cm ² .s)	8.2873E+12	7.7338E+12	-6.68%	8.4466E+12	7.8993e+12	-6.48%
ϕ_{core} (n/cm ² .s)	9.5463E+14	9.5076E+14	-0.41%	9.7840E+14	9.7273E+14	-0.58%

INAC 2024 - Rio de Janeiro, 08 de maio

INAC 2024 - Rio de Janeiro, 08 de maio

Conclusion

- ✓ Although the mass variation between the codes presents very similar values, referring to the consumption and production of actinides and fission products, respectively, the final activity of the burnup inventory presents a percentage difference of around 16%.
- ✓ The CINDER90 library file used for burnup in MCNP6.2 can only track a limited number of isotopes in its decay chain algorithm.
- ✓ In principle, in SERPENT 2.1.32, there is no such limitation, and it is also possible to work with updated decay libraries, such as ENDF/B-VIII.0, used in this work.

Nuclides selected for inclusion by the Isotope Generator Algorithm

Bibliography

- 1. Thomas J. Dolan, Molten Salt Reactors and Thorium Energy, Chapter by Thomas J. Dolan, Elsevier, (2017).
- 2. Ian Scott, Molten Salt Reactors and Thorium Energy, Chapter by Ian Scott, Thomas J. Dolan, Elsevier, (2019).
- 3. Christopher J. Werner *et al.* MCNP USER'S MANUAL Code Version 6.2. Los Alamos National Laboratory, Report LA-UR-17-29981 (USA), 2017.
- 4. J. Lepp anen *et al.*, "Development of a dynamic simulation mode in serpent 2 monte carlo code," *Proceedings* of M&C, pp. 5–9, 2013.
- D. A. Brown, M. Chadwick, R. Capote, *et al.*, "Endf/b-viii. 0: The 8th major release of the nuclear reaction data library with cielo-project cross sections, new standards and thermal scattering data," *Nuclear Data Sheets*, vol. 148, pp. 1–142, 2018.
- 6. R. E. MacFarlane *et al.* The NJOY Nuclear Data Processing System, Version 2016. Los Alamos National Laboratory, Report LA-UR-17-20093 (USA), 2016.
- (Lindsay et al., 2018): Introduction to Moltres: An application for simulation of Molten Salt Reactors, Alexander Lindsay, Gavin Ridley, Andrei Rykhlevskiic, Kathryn Huff, Annals of Nuclear Energy 114 (2018) 530–540.
- (Kang et al., 2020): Evaluation of 99Mo production in a small modular thorium based molten salt reactor, Xuzhong Kang, Guifeng Zhu, Rui Yan, Yafen Liu, Yang Zou, Ye Dai, Xiangzhou Cai, Progress in Nuclear Energy 124 (2020) 103337.

ACKNOWLEDGEMENTS

Fundação de Amparo à Pesquisa do Éstado de Minas Gerais

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Garantindo Energia, Saúde e Alimentação

🖮 6 a 10 de maio de 2024

🗣 Escola de Guerra Naval (EGN) | Rio de Janeiro - RJ

Neutronic Evaluation of a SMR using the MCNP and SERPENT Codes

Natália Gonçalves, Karytha M. S. Corrêa, María Lorduy-Alós, Sergio Gallardo, Carlos E. Velasquez, Clarysson Alberto M. da Silva, Gumersindo Verdu and Claubia Pereira nataliagplo@ufmg.br

Rio de Janeiro, 08 de maio de 2024