

Garantindo Energia, Saúde e Alimentação

🛅 6 a 10 de maio de 2024

🗣 Escola de Guerra Naval (EGN) | Rio de Janeiro - RJ

Previous analysis of fuels transuranic inserted into the hybrid fusion-fission ARC reactor

Karytha M. S. Corrêa, Natália Gonçalves, Claubia Pereira, and Carlos E. Velasquez

karymeriesc@ufmg.br

Rio de Janeiro, 08 de maio de 2024

Figure 1 - Illustration of the reference Affordable Robust Compact Reactor (ARC) [1].

Table I - Geometric parameters of the ARC system [1].

Parameters	ARC
Major radius, R ₀ (m)	3.3
Minor radius, r (m)	1.13
Fusion power (MW)	525
Plasma elongation, k	1.84
Toroidal magnetic field (T)	9.2
Plasma current, I _p (MA)	7.8
Type of plasma	D-T
Volume plasma chamber (m ³)	141

Figure 3 - High-Temperature Superconductors (HTS) [1].

Figure 2 - Illustration of the configuration of the reactor design ARC [1].

Figure 4 - Simplified model D-shape format design of the ARC reactor (view in the XZ plane) [2].

Figure 5 - Neutron flux in the ARC system [2]

Figure 6 - Simplified model D-shape of the ARC reactor with fission transmutation layer (view in the XZ plane) [2].

METHODOLOGY

Simulations used the Monte Carlo N-Particle code (MCNP5)

Figure 7 - Simplified model D-shape of the ARC reactor with fission transmutation layer (view in the XZ plane) [2].

Table II - Composition of the transmutation layer [2].

Components	Volume (cm ³)
Fuel	5.2177x10 ⁶
Cladding HT-9	2.6459x10 ⁶
Coolant LBE	1.8597x10 ⁷
Total volume	2.6461x10 ⁷

METHODOLOGY

- The burnup fuel is produced from the spent fuel of the Angra I reactor (PWR). The Angra I fuel has an initial enrichment of 3.1% which, after a burnup of 33 GWd/t, is then kept for another 5 years in a cooling pool. After that, the spent fuel matrix is reprocessed through the GANEX (Actinide Extraction Group) process and spiked with thorium [3].
- ➤ TRU-O₂ fuel
- ➤ TRU-N fuel

Table III: Fuel composition (normalized) TRU- O_2 with 15% of the fissile material [3].

Nuclide	Weight fraction	Nuclide	Weight fraction	Nuclide	Weight fraction
²³² Th	6.62386E-01	²³⁹ Np	1.75072E-05	²⁴² Cm	9.61704E-06
²³³ U	7.74502E-13	²³⁸ Pu	3.80787E-03	²⁴⁴ Cm	1.10250E-05
²³⁴ U	3.19641E-06	²³⁹ Pu	9.97122E-02	²⁴⁵ Cm	3.83639E-07
²³⁵ U	1.66354E-04	²⁴⁰ Pu	3.40877E-02	¹⁴³ Nd	2.54401E-03
²³⁶ U	8.50376E-05	²⁴¹ Pu	3.20511E-02	¹⁵⁰ Sm	5.10164E-04
²³⁷ U	2.19361E-09	²⁴² Pu	1.21128E-02	¹⁵³ Eu	1.08484E-04
²³⁸ U	2.02225E-02	²⁴¹ Am	3.08848E-05	¹⁶ O	1.20469E-01
²³⁷ Np	9.34742E-03	²⁴² Am	5.68381E-08		
²³⁸ Np	2.77277E-07	²⁴³ Am	2.31640E-03		

Table IV: Fuel composition (normalized) TRU-N with 15% of the fissile material [3].

Nuclide	Weight fraction	Nuclide	Weight fraction	Nuclide	Weight fraction
²³² Th	7.259827E-01	²³⁹ Np	1.752568E-05	²⁴² Cm	9.627217E-06
²³³ U	7.753217E-13	²³⁸ Pu	3.811898E-03	²⁴⁴ Cm	1.103662E-05
²³⁴ U	3.199789E-06	²³⁹ Pu	9.981778E-02	²⁴⁵ Cm	3.840447E-07
²³⁵ U	1.665298E-04	²⁴⁰ Pu	3.412380E-02	¹⁴³ Nd	2.546698E-03
²³⁶ U	8.512763E-05	²⁴¹ Pu	3.208502E-02	¹⁵⁰ Sm	5.107039E-04
²³⁷ U	2.195933E-09	²⁴² Pu	1.212559E-02	¹⁵³ Eu	1.085985E-04
²³⁸ U	2.024394E-02	²⁴¹ Am	3.091746E-05	¹⁴ N	5.664246E-02
²³⁷ Np	9.357313E-03	²⁴² Am	5.689827E-08		
²³⁸ Np	2.775700E-07	²⁴³ Am	2.318853E-03		

METHODOLOGY

- □ The simulations used the Monte Carlo N-Particle code (MCNP5), in which the parameters used for this analysis were 10⁶ neutrons in 550 generations, with the first 50 discarded for source convergence.
 - Analyses the Beginning of Life (BOF) of the fuel;
 - \circ Neutron flux in the volume of the transmutation layer.
- Burnup of fuel using Monteburns code, which links the MCNP to the depletion tool ORIGEN2.1
 - The burnup fuel process was conducted over 5 years, using a fission power of 1500 MW.

RESULTS AND DISCUSSION

Table V: Steady-state calculated system properties for TRU-O₂ and TRU-N fuels.

Parameters	TRU-O ₂	TRU-N	Difference
k _{eff}	0.98793 ± 0.00069	0.96964 ± 0.00082	1829 pcm
$ar{E}_{fission}$	4.3375E-01 MeV	4.5828E-01 MeV	5.35 %
η	1.5107	1.4598	3.37 %
Thermal neutron flux (0.625 eV)	0.00%	0.00%	0.0 рр
Intermediate neutron flux (0.625 eV - 100 keV)	45.61%	43.56%	2.05 pp
Fast neutron flux (>100 keV)	54.38%	56.44%	2.06 pp
P_{NL}	0.8262	0.8093	2.04 %
Percent of the rate elastic collision reaction	89.02 %	87.17%	1.85 pp

RESULTS AND DISCUSSION

Figure 8 - Neutron flux calculated in the volume of the transmutation layer for TRU-N and TRU-O₂ models.

- Neutron flux in the volume of the transmutation layer.
- The neutron flux in TRU-O₂ is greater due to the higher k_{eff} value and the lower leakage in this system.

Figure 9 - k_{eff} values during fuel burnup for TRU-N and TRU-O₂ systems.

Figure 10 – Calculated transmutation of the actinides and minor actinides, and buildup fission products for TRU-N and TRU-O₂ systems.

- A previous analysis of TRU-N and TRU-O₂ fuels was carried out in a hybrid fusion-fission system based on the ARC reactor.
- TRU-O₂ and TRU-N fuels showed transmutation of actinides and minor actinides. TRU-N fuel presented optimal transmutation rates during burnup fuel, compared to TRU-O₂.
- Future work: Evaluate other fuels to be inserted into the hybrid fusion-fission system, (such as Uranium Carbide and Cermet fuel), and the most suitable coolant and cladding materials for these fuels.

References

[1] SORBOM, B. N. et al. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets. Fusion Engineering and Design, vol. 100, pp. 378-405 (2015).

[2] Corrêa, K. S.; Pereira, C.; Velasquez, C. E. V. "A Proposal of a Hybrid Fusion-Fission System Based on ARC". In: Anais da Semana Nacional de Engenharia Nuclear e da Energia e Ciências das Radiações. Belo Horizonte (MG) Escola de Engenharia da UFMG e Centro de Desenvolvimento da Tecnologia Nuclear. Proceedings of Congress VI Sencir (2022).

[3] ARUQUIPA, Wilmer et al. Reprocessing techniques of LWR spent fuel for reutilization in hybrid systems and IV generation reactors.

In: 7 International Nuclear Atlantic Conference (INAC) 2017, Belo Horizonte, MG, Proceedings of Congress INAC (2017).

[4] Salvatores, Massimo, and Giuseppe Palmiotti. "Radioactive waste partitioning and transmutation within advanced fuel cycles:

Achievements and challenges." Progress in Particle and Nuclear Physics 66.1 (2011): 144-166.

[5] Velasquez, Carlos E., et al. "Fusion–fission hybrid systems for transmutation." Journal of Fusion Energy 35 (2016): 505-512.

[6] Jaques, Brian J., et al. "Synthesis and sintering of UN-UO2 fuel composites." Journal of Nuclear Materials. v. 466, p. 745-754 (2015).

[7] Subhash, Ghatu, Kuang-Hsi Wu and James S. Tulenko. "Development of an Innovative High-Thermal Conductivity UO2 Ceramic Composites Fuel Pellets with Carbon Nano-Tubes Using Spark Plasma Sintering." (2014).

[8] Shaaban, Ismail, and Mohamad Albarhoum. "Study of criticality safety and neutronic parameters of UO2 fuel in MTR research reactors using the MCNP4C code." Annals of Nuclear Energy. v. 98, p. 144-156 (2016).

[9] Jones, Suzanne, et al. "A review of the reprocessability of uranium nitride based fuels." Progress in Nuclear Energy. v. 165, p. 104917 (2023).

ACKNOWLEDGEMENTS

UF MG

Fundação de Amparo à Pesquisa do Éstado de Minas Gerais

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Garantindo Energia, Saúde e Alimentação

🛅 6 a 10 de maio de 2024

🗣 Escola de Guerra Naval (EGN) | Rio de Janeiro - RJ

Previous analysis of fuels transuranic inserted into the hybrid fusion-fission ARC reactor

Karytha M. S. Corrêa, Natália Gonçalves, Claubia Pereira, and Carlos E. Velasquez

karymeriesc@ufmg.br

Rio de Janeiro, 08 de maio de 2024