

# Steady-State Neutronic Assessment of a Micro Reactor Based on NASA's Krusty Project

Gabriel.B.Domingos, Clarysson A. M. Silva, Claubia. P. B. Lima

gb17491@ufmg.br







# **INTRODUCTION**

**Micro reactor:** Provide electricity and heat in remote or urban regions due to its compact size and transportability. They can be integrated into microgrids with other sustainable technologies. Power less than 10MWe.

**Kilopower:** Kilopower project developed preliminary concepts and technologies that could be used for an affordable fission nuclear power system to enable long-duration stays on planetary surfaces.

**KRUSTY:** The KRUSTY project (Kilopower Using Stirling Technology), achieved successful testing in 2018, being considered by the team for a lunar experiment.

**Objectives:** Modeling and analysis of a Krusty-based micro reactor using MCNP. Initially obtaining the main neutronic aspects.

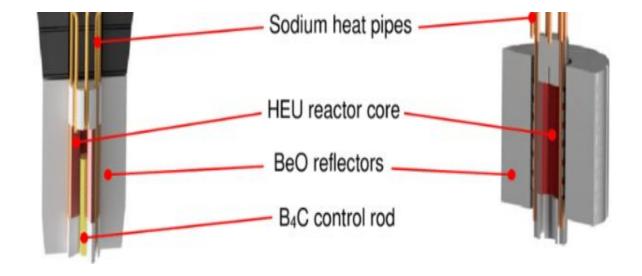




# METODOLOGY

1) Literature review.

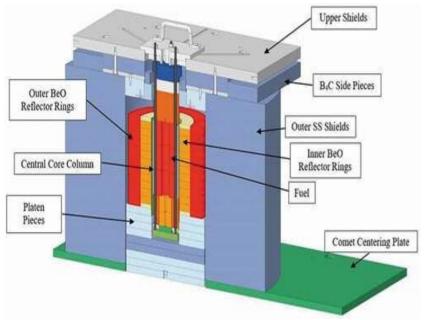
2) Modeling and analysis of Krusty-based micro reactor using MCNP.


3) Assessment of neutronic parameters.

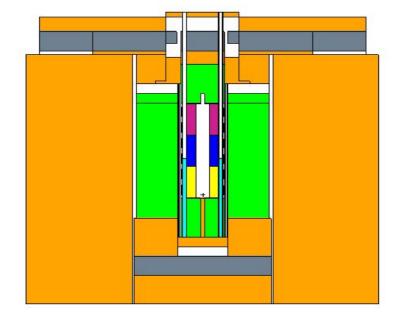




# **KRUSTY PROJECT**





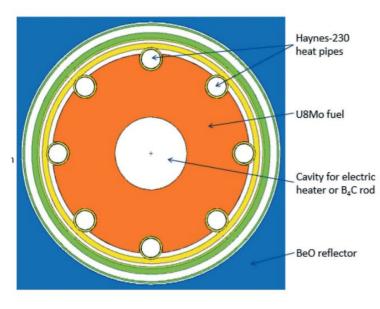


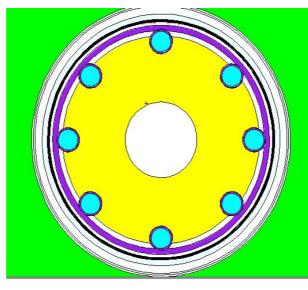

## **KRUSTY RADIAL GEOMETRY**



NASA PROJECT




MCNP 6.2







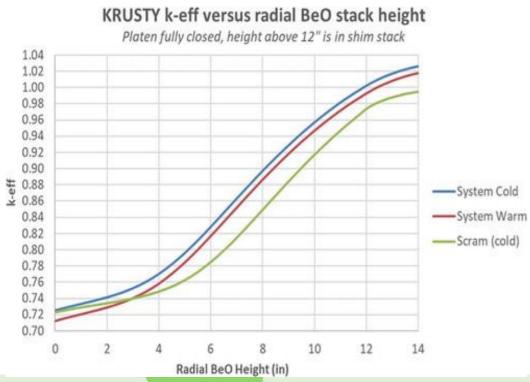

## **KRUSTY AXIAL GEOMETRY**

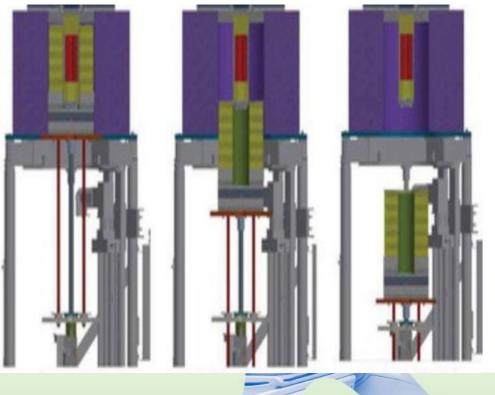






NASA PROJECT


MCNP 6.2


U8Mo







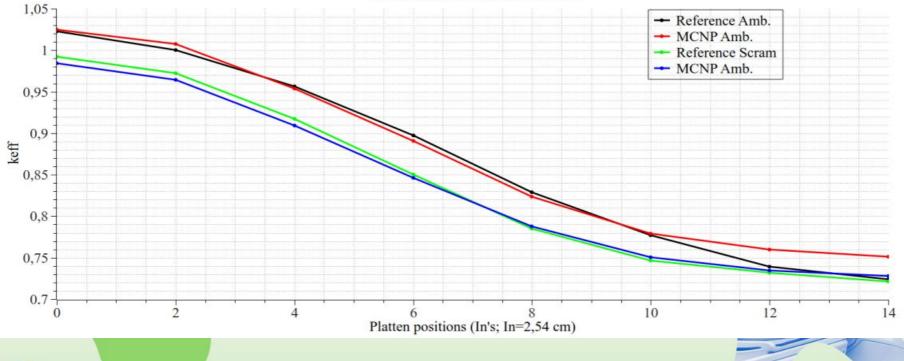






# **MODEL CHECK**

The results were obtained with:


- MCNP 6.2
- ENDF 7.0 for the cross-sections.
- Room temperature.
- 230 cycles disregarding the first 30.
- 15 thousand initial particles which is equivalent to the reference.





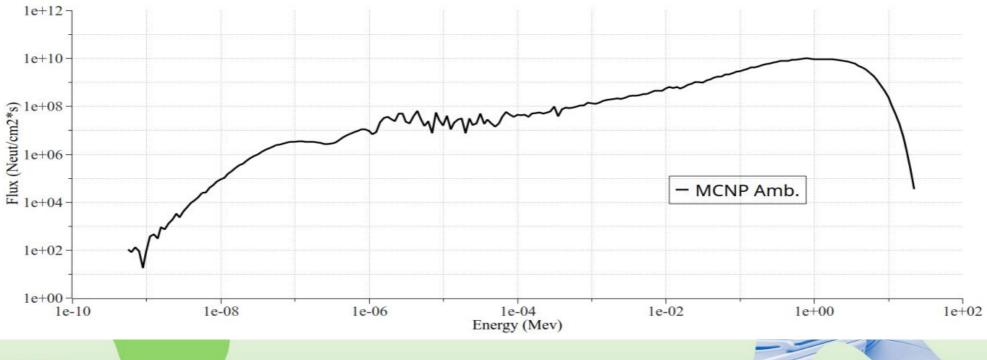
## **MODEL CHECK**

#### MULTIPLICATION FACTOR





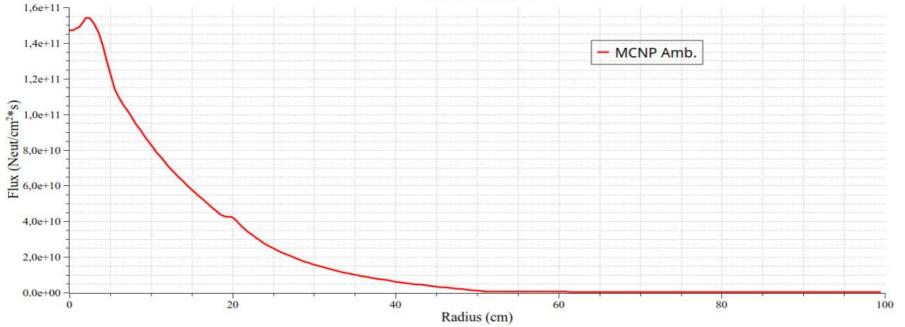
# **MODEL CHECK**


| Radial BeO  | Cold    |         | Scram   |         | Difference |       | Cold | Scram |
|-------------|---------|---------|---------|---------|------------|-------|------|-------|
| Heigth (in) | REF     | MCNP    | REF     | MCNP    | cold       | scram | σ    | σ     |
| 0           | 1,02290 | 1,02464 | 0,99250 | 0,98455 | -174       | 795   | 45   | 47    |
| 2           | 1,00100 | 1,00756 | 0,97290 | 0,96422 | -656       | 868   | 46   | 40    |
| 4           | 0,95660 | 0,95381 | 0,91710 | 0,90907 | 279        | 803   | 46   | 42    |
| 6           | 0,89740 | 0,89055 | 0,84990 | 0,84588 | 685        | 402   | 40   | 39    |
| 8           | 0,82870 | 0,82404 | 0,78480 | 0,78768 | 466        | -288  | 35   | 42    |
| 10          | 0,77720 | 0,77924 | 0,74680 | 0,75027 | -204       | -347  | 36   | 32    |
| 12          | 0,73940 | 0,75978 | 0,73210 | 0,73479 | -2038      | -269  | 36   | 33    |
| 14          | 0,72410 | 0,75116 | 0,72110 | 0,72779 | -2706      | -669  | 35   | 32    |





# **NEUTRONIC ANALYSES**


SPECTRUM





## **NEUTRONIC ANALYSES**

RADIAL FLUX







# **FUTURES**

Works to be done:

- Perform tests at operating temperature.
- Promote a fuel composition that meets international agreements for enrichment.
- Perform burn tests





## ACKNOWLEDGEMENT











Conselho Nacional de Desenvolvimento Científico e Tecnológico



**FAPEMIG** 



# REFERENCES

[1] "What Are Modular

Reactors?"https://www.iaea.org/newscenter/news/what-are-small-modular-reactors-smrs

[2] Subki, Hadid. "Advances in small modular reactor technology developments." (2020)

[3] Poston, David Irvin, "Krusty design and modeling," No. LA-UR--16-28377. Los Alamos National Lab. (2016).

[4] Genoni, Chiara. "Core neutronics for Space reactors: analysis of HALEU configurations." (2022)

[5] "Demonstration Proves Nuclear Fission System Can Provide Space Exploration Power"

https://www.nasa.gov/news-release/demonstration-proves-nuclear-fission-system-can-provide-space-explor at ionpower/

[6]Sanchez, Rene, et al. "Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Component-Critical Experiments." Nuclear Technology 206.sup1: S56-S67 (2020)

