

♥ Escola de Guerra Naval (EGN) | Rio de Janeiro - RJ

Thermal-hydraulic Modeling of a Small Modular Reactor Core Using RELAP5

B.V. Melo, C. Oliveira, A.L. Costa, C.A.M. Silva, L.P.C Leão, G.L.A. Ribeiro

bviotti@protonmail.com

Rio de Janeiro, 08 de maio de 2024

Contents

- 1) Introduction
- 2) Motivations
- 3) Objectives
- 4) Methodology
- 5) Results and Discussion
- 6) Conclusions and Future Goals
- 7) Acknowledgments
- 8) References

1. Introduction - Small Modular Reactors (SMRs)

- Up to 300 MWth
- Reduced size
- Modularization
- Improved safety

Figure 1: Classification of SMRs according to the IAEA [1].

1. Introduction - System-integrated Modular Advanced Reactor (SMART)

- Pressurized Water Reactor (PWR)
- 330 MWt
- Four coolant pumps
- 12 steam generators
- 57 fuel assemblies (17x17)
- 264 fuel rods per fuel assembly
 - (8.05 mm *D* / 2.0m *L*)
- UO₂ (4.95%)
- No soluble boron

1. Introduction - SMART

Table 1. General characteristics of fuer assemblies used on SWARCI [1].				
Fuel Assemblies				
Туре	Total	Number of	Number of	Number of Gd ₂ O ₃ -
	Number	Fuel Rods	Al ₂ O ₃ -B ₄ C rods	UO ₂ rods
Α	20	240	24	0
В	16	244	20	0
C	1	236	24	4
D	20	228	24	12

Table I: General characteristics of fuel assemblies used on SMART [1]

Figura 3: Core loading pattern of SMART [3].

2. Motivations

- Available literature;
- Modeling experience on SMRs;
- Parallel studies in development on the Nuclear Engineering Department (UFMG) – STHIRP and OpenFOAM;
- Part of the INCT (National Institute of Science and Technology) project involving SMRs;
- Optimization potential.

3. Objectives

- Model the components of a SMART core on steady-state operation condition using the RELAP5 MOD3.3 code;
- Verify the nodalization;
- Perform transient calculations on the verified model to assess the system's safety.

4. Methodology

Figure 4: Nodalization of SMART core components.

Figure 5: Heat structures mesh point distribution.

4. Methodology

Thermal Hydraulic	Model	Coolant Mass	Number of fuel	Channel Flow			
Channel	Identification	Flow Rate	assemblies/type	Area (m ²)			
		(kg/s)					
1	301	733.33	1/C	0.0246			
2	302	586.67	20/A	0.4912			
3	303	36.67	16/B	0.3930			
4	304	733.33	20/D	0.4912			

Table II: Entry data for the RELAP5 SMART model [2].

Table III: General entry data for the RELAP5 SMART model [2].

Parameter	Value
Pressure	15 MPa
Coolant Mass Flow Rate	2090 kg/s
Coolant Inlet Temperature	543 K
Total flow area	1.4 m ²

5. Results and Discussion

Table IV: Comparison	n between referen	nce data and REL	AP5 calculations [1].
----------------------	-------------------	------------------	-----------------------

Parameter	Reference data	RELAP5	Error*(%)	Suggested (%) [6]
Power (MW)	330	330	0	2.0
Average outlet coolant temp. (°C)	310	310.23	0.07	0.5
Core coolant temp. increase (°C)	40	40.38	0.07	0.5
Core Pressure drop (kPa)	400	359.65	0.28	10
Outlet core mass flow (kg/s)	2090	2090	0	2

*Error = (Reference – Calculated)/Reference

**List or requirements for the steady state qualification of a nodalization [6]

5. Results and Discussion

5. Results and Discussion

Expanded Model

- 57 TH channels
- Channel Flow Area = 0.0246 m²
- Mass Flow Rate/THC = 36.67 kg/s

6. Conclusions and future goals

- Good approximation for steady state conditions;
- Coolant, fuel and cladding temperatures within reference range;
- Inclusion of pumps, pressurizer and steam generators;
- Transient calculations.

7. Acknowledgements

8. References

[1] C. L. Vinoya et al. "State-of-the-Art Review of Small Modular Reactors". In: Energies 16.7 (2023), p. 3224.

[2] U. S. Nuclear Regulatory Commission, 2001. RELAP5/MOD3.3 Beta Code Manual, Vol. IV – Models and Correlations. Nuclear Safety Analysis Division, NUREG/CR-5535/Rev 1-Vol IV, Washington, DC.

[3] C. C. Lee, et al. "Nuclear and thermal hydraulic design characteristics of the SMART core." *International Conference on Global Environment and Advanced Nuclear Power Plants Kyoto Japan* (2003).

[4] S. Y. Park et al. Nuclear characteristics analysis report for system-integrated modular advanced reactor. 1998.

[5] H. C. Kim et al. "Safety analysis of SMART". Em: Proc. of Int. Conf. on Global Environment and Advanced Nuclear Power Plants: GENES4/ANP2003, Kyoto, Japan. 2003.

[6] A. Petruzzi and F. D'Auria, 2008. Thermal hydraulic System Codes in Nuclear Reactor Safety and Qualification Procedures. Science and Technology of Nuclear Installations, 2008, 460795.

[7] N. E. Todreas and M. S. Kazimi. Nuclear systems volume I: Thermal hydraulic fundamentals. CRC press, 2021.